必須課題 I 論文とりまとめシート (サンプル)

① 課題の抽出	② 課題の生じている原因の洗い出し	③ 課題の解決策	④新たなリスクと対応策
テーマ『インフラ整備における DX の推進』	課題が何により生じているかの原因を考える。	②の課題から二つを選択(下記サンプルではすべてについて	<i>人、金、モノ、時間、システム、などを考慮して思いつく</i> も
人、金、モノ、時間、システム、将来性、などを考慮して思	ここでも人、金、モノ、時間、システム、などを軸に考えて	記載)。②で明確になった原因に対処する方策から記述に基	のをなるべく挙げる。併せて短期/中長期のリスクも考える。
いつくも <i>のをなるべく挙げる</i>	みる。	づき解決策を考える。具体的な対策をイメージする	
課題 1 (運用)	・専用のオペレータ、技術者が不足している。	・専用オペレータを配置、官民にて育成のための教育実施。	・外部データとの連携に伴うデータ流出や改竄の可能性
運用に要する時間と資源が多大である	・現状のシステムが外部データ(地図データ、気象、交通な	・外部データを積極的に活用できるようシステム改築。外部	→並行してセキュリティ対策を第三者を交えて行う。
→効率化、時間と資源の創出が必要	どのデータ等)と連携がなされていない。	データ利用・活用マニュアル整備と連携のための機関を設置	
・各種システムがデジタル化に対応しきれてない	・各種提出書類におけるデジタル化が不十分なため非効率	する。	
・データシステムとの連携が不十分なため各種デジタルデ	である。	・提出書類のデジタル化推進。官側のシステムを連携し、重	
ータと連携ができない		複書類等をなくすとともに民側にて積極的に活用できる仕	
		組みづくり。	
課題 2 (データのデジタル化)	・古い完成図書などは紙ベースであり、再度 CAD データ化	・補修等でアップデートしたデータを連携し将来のための	・活用のためのシステム構築に新たな費用と時間がかかる
各種情報がデジタル化されておらず利用しにくい	する必要がある。	データとして残す。	→戦略的なシステム化を官民学にて行う。市民のコンセン
→利用しやすいデータ形式、システムの構築	・公的なデジタルマップ、BIM データを工事用のデータに活	・デジタルマップを活用できるよう発注側で積極的に活用	サスを得ながらの計画遂行を目指す。
・完成図書など、デジタルデータ化が遅れているため流用で	用、変換するシステムが十分でない。	する (契約条件、発注書類に含める)。	・請負者側のデジタル化の差による受注差の発生
きない	・現地三次元自動計測、自動化などの導入ができていない。	・現地での3次元計測、自動計測等活用。官民学にて積極的	→デジタル対応が優位となることは維持しつつ、全体とし
・デジタルマップ、各種 BIM データが不十分		に利用する仕組みづくり。現地計測データから図面や計画書	ての対応が進むよう業界としてのバックアップを行う。
・現地計測へのデジタル化対応が不十分		類に活用できるよう連携するシステムを構築。	
課題 3 (システム)	・図面データから製作、現場工事まで活用できるデータ体系	・図面、製作データ、品質管理、現地工事、出来形管理、メ	・デジタルデータのブラックボックス化によりトラブル発
業務におけるデータ活用が連動しておらず非効率	となっていない。	ンテナンスまで一貫して活用できる体系を官民にて協議、構	生時の対応が困難になる
→データ活用の連動、外部データの活用など	・品質や出来形管理に活用できるデータになっていない	築する。	→データの可視化を AR 等にて実施。ミス、エラーによるト
・地形データ、BIM、CAD など図面データ、製作へのデー	・現地計測データの利用においてデジタルデータの活用が	・現地計測データをそのまま活用できるシステムを構築	ラブル発生を未然に防ぐ。
タ受け渡し、現場データとの連携などにおいてデータの受け	不十分		
渡し、活用が不十分で非効率である。			
課題 4 (デジタルデータの活用)	・モニタリングデータの収集は行われているが、分析、活用	・モニタリングデータは幅広く公開しメンテナンスに活用。	・データ解析の手法、結果の公表方法によっては特定の機関
メンテナンス等のためのモニタリングデータ等を活用でき	するためのシステム化ができていない。	・地図情報や気象情報を公開し災害対策に活用。	にトラブルや対応が集中する (避難施設など)
ていない。	・災害リスクの分析や解析に活用できていない。	・官民学にて活用の方法を協議、運用する。	→得られた結果の公開方法、利用方法を含めどのように活用
→デジタルデータの活用			するかを三社にて協議する。
課題 5 (データの開発への利用)	・官民学においてデータの活用が十分になされていないた	・災害対策や新規技術開発のために各種情報を公開する。	・技術開発にかかわる機関の負担が増加する
・技術開発のためのデータ活用が不十分	め技術開発への対応が遅れている。	・特に過去の災害データからハザードマップ等を作成、減災	→業界としてのバックアップ、公的な補助等を実施
→システムを活用した技術開発のための環境づくり		に役立てる。	・開発された技術の検証に時間がかかる
			→モデル工事等の設定にて積極的に活用、登録技術(
			NETIS 等)にて活用を推進する。